Recognition of Plasma-Treated Rice Based on 3D Deep Residual Network with Attention Mechanism

نویسندگان

چکیده

Low-temperature plasma is a new agricultural green technology, which can improve the yield and quality of rice. How to identify harvest rice grown by seed treatment plays an important role in popularization application low-temperature agriculture. This study collected hyperspectral data rice, including treated constructed recognition model based on image (HSI) 3D ResNet (HSI-3DResNet), extracts spatial spectral features HSI cubes through convolution. In addition, channels attention module (C3DAM) proposed, extract key spectra. Experiments showed that proposed C3DAM accuracy 4.2%, while size parameters only increase 4.1% 3.8%, respectively. The HSI-3DResNet this superior other methods with overall 97.47%. At same time, algorithm paper was also verified public dataset.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Anomaly-based Web Attack Detection: The Application of Deep Neural Network Seq2Seq With Attention Mechanism

Today, the use of the Internet and Internet sites has been an integrated part of the people’s lives, and most activities and important data are in the Internet websites. Thus, attempts to intrude into these websites have grown exponentially. Intrusion detection systems (IDS) of web attacks are an approach to protect users. But, these systems are suffering from such drawbacks as low accuracy in ...

متن کامل

Face Recognition based on Deep Neural Network

In modern life, we see more techniques of biometric features recognition have been used to our surrounding life, especially the applications in telephones and laptops. These biometric recognition techniques contain face recognition, fingerprint recognition and iris recognition. Our work focuses on the face recognition problem and uses a deep learning method, convolutional neural network, to sol...

متن کامل

3D-based Deep Convolutional Neural Network for action recognition with depth sequences

Traditional algorithms to design hand-crafted features for action recognition have been a hot research area in last decade. Compared to RGB video, depth sequence is more insensitive to lighting changes and more discriminative due to its capability to catch geometric information of object. Unlike many existing methods for action recognition which depend on well-designed features, this paper stud...

متن کامل

Action Recognition with Joint Attention on Multi-Level Deep Features

We propose a novel deep supervised neural network for the task of action recognition in videos, which implicitly takes advantage of visual tracking and shares the robustness of both deep Convolutional Neural Network (CNN) and Recurrent Neural Network (RNN). In our method, a multi-branch model is proposed to suppress noise from background jitters. Specifically, we firstly extract multi-level dee...

متن کامل

Joint Network based Attention for Action Recognition

By extracting spatial and temporal characteristics in one network, the two-stream ConvNets can achieve the state-ofthe-art performance in action recognition. However, such a framework typically suffers from the separately processing of spatial and temporal information between the two standalone streams and is hard to capture long-term temporal dependence of an action. More importantly, it is in...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Mathematics

سال: 2023

ISSN: ['2227-7390']

DOI: https://doi.org/10.3390/math11071686